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SYNOPSIS 

The method of additive properties was used to calculate the dynamic mechanical relaxation 
time for a series of polyurethanes. Calculations were also made of density and glass transition 
temperature. Group contributions for nine component groups were determined. With these 
group values, the densities of the 12 polymers used to determine the groups were calculated 
and found to agree with measured values within an average of 0.2%. Calculated glass tran- 
sition temperatures also agreed with measured values within 0.2%. The relaxation time, 
defined as a parameter in the Havriliak-Negami equation, was shown to be correlated with 
the glass transition temperature, allowing relaxation time to also be expressed as an additive 
property. Calculated logarithms of relaxation times agree with measured values to within 
7% over a range,of relaxation times covering many decades. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

The method of additive properties has proven to be 
a useful approach for many polymer properties. The 
method has been described in detail by van Kreve- 
len.' This approach of calculating polymer properties 
from component group contributions can give reli- 
able results for many, but not all, polymer properties. 
The additive function that is valid for one property 
may not be valid for other properties. The function 
may involve a linear sum, a sum of reciprocals, or 
the sum of logarithmic terms. To be useful, one must 
establish the form of the additive function and de- 
termine the values for a variety of groups. Once this 
has been done, these groups can be used to make 
predictions for polymers for which data are not 
available. Trends in data, such as molecular weight 
dependence of properties, can be easily determined. 

As an example of the use of additive properties, 
it is assumed that the molar volume of a polymer is 
the sum of the volumes of the individual components 
making up the polymer and that these component 
values are the same in every polymer. Thus, 
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where N i  is the number of ith groups ip the repeat 
unit and Vi is the molar volume of the ith group. 

Because the molar mass of the polymer can be 
expressed as 

where Mi is the molar mass of the ith group, it fol- 
lows from eqs. (1) and (2) that the density of a poly- 
mer can be calculated from 

Equation (3) is an illustration that not all additive 
functions have the simple form of eqs. (1) and (2). 

Another additive property, which is central to this 
work, is the glass transition temperature, Te There 
have been a number of empirical forms assumed for 
this property.2 The one used here is given by 

where Tgi is the contribution of the ith group to the 
glass transition temperature of a polymer containing 
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that group. The form of eq. (4) is an extension of 
the relation commonly used for the Tg of a copolymer 
in terms of homopolymer values. Equation (4) is an- 
other example of the fact that not all additive prop- 
erties are simple linear sums. One must determine 
the analytical form of the additive function, if it 
exists. 

Equations (3) and (4) can be used to make pre- 
dictions of the density and glass transition temper- 
ature for any polymer that can be expressed in terms 
of known group values. The general technique for 
determining group values is to synthesize a series of 
polymers that contains the desired groups and mea- 
sure the properties of these polymers. Each polymer 
represents an equation in terms of the unknown 
group values. For m polymers and n groups, the sys- 
tem can be expressed as m simultaneous equations 
in n unknowns with m > n. The least-square solution 
of such a system of equations is well known. Details 
of the mathematical analysis procedure have already 
been p~bl i shed .~ .~  

The purpose of this paper is to establish that the 
dynamic mechanical relaxation time is an additive 
property; determine the analytical form of the ad- 
ditive function; and determine the group contribu- 
tions to molar volume, glass transition temperature, 
and relaxation time for a series of polyurethanes for 
which all of these properties have been measured 
on the same samples. 

POLYURETHANE GROUP ANALYSIS 

The polymers considered here are polyurethanes. 
They are copolymers consisting of hard and soft 
segments that can be either phase mixed or phase 
separated. The group properties can be different in 
the two cases, and this study is restricted to phase- 
mixed systems only. 

In simplest terms, the polymers of interest are 
formed by the reaction of a high-molecular-weight 
diol with a diisocyanate and a low-molecular-weight 
diol chain extender to form a urethane. As a specific 
example, when 1 mol of high-molecular-weight diol 
is reacted with 3 mol of diisocyanate and 2 mol of 
chain extender, the resulting polyurethane has the 
idealized structure shown below. 

where U = - OCONH - is the urethane group and 
R, R’, and R” are the residues for the high-molecular- 
weight diol, diisocyanate, and chain extender, re- 
spectively. (There is a subscript n on the residue R 
because the high-molecular-weight diol is made up 
of a simple group repeated n times.) 

Most polyurethanes considered here were taken 
from our earlier work on hindered diol chain exten- 
d e r ~ . ~  The high-molecular-weight diol in all the 
polymers was poly (tetramethylene ether) glycol 
( PTMG ) . Two nominal molecular weights were 
used: either 1000 or 2000. The diisocyanate was 4,4’- 
diphenylmethane diisocyanate (MDI) . Various mole 
ratios of MDI to PTMG were synthesized. Five chain 
extenders were used four hindered diols and 
1,3-butanediol. The hindered diols were 2,Z-di- 
methyl- 1,3-propanediol, 2,2-diethyl- 1,3-propanediol, 
2-ethyl-2-methyl-1,3-propanediol, and 2-butyl-2- 
ethy1-1,3-propanediol. There were 10 polymers in 
all. They are the first 10 listed in Table I. 

For this work, two other diisocyanates were in- 
vestigated, one aliphatic and the other aromatic. The 
aliphatic diisocyanate was 1,6-diisocyanato hexane 
and the aromatic diisocyanate was 1,3-phenylene 
diisocyanate. Thus, there were two additional poly- 
mers added to Table I, for a total of 12 polymers. 

Considering only independent bivalent groups, 
the polymer set given in Table I can be broken down 
into the nine independent groups listed in the first 
column of Table 11. The groups include a tetra- 
methylene ether group from the high-molecular- 
weight diol, three groups from the diisocyanates, and 
five groups from the chain extenders. Molar masses 
of the groups are listed in the second column of 
Table 11. 

Before examining the results obtained using these 
groups, it is worthwhile to summarize the approxi- 
mations made in their determination. First, idealized 
molecular structures are assumed. Second, all poly- 
mers are assumed to be in the high-molecular-weight 
plateau where molecular weight need not be consid- 
ered. Third, the polymers here were synthesized us- 
ing a 5% excess isocyanate to produce a small 
amount of cross-linking. This cross-linking is ig- 
nored and the polymers are treated as linear systems. 
Fourth, one extra oxygen atom is added to the end 
of the 1000 or 2000 molecular weight tetramethylene 
ether group to account for the one that goes into the 
urethane group. To eliminate the approximations 
would require a significant number of new polymers 
to be synthesized, and experience has shown that 
these approximations produce insignificant errors. 
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Table I Polymer Properties 

Density (g/cm3) Tg (K) In 7 (s) 

No. Description Meas. Calc. Meas. Calc. Meas. Calc. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 PTMG2000/3 MDI/2 DMPD 
1 PTMG2000/4 MDI/3 DMPD 
1 PTMG2000/6 MDI/5 DMPD 
1 PTMG1000/3 MDI/2 DMPD 
1 PTMG2000/3 MDI/2 DEPD 
1 PTMG1000/3 MDI/2 1,3BDO' 
1 PTMG1000/3 MDI/2 EMPD 
1 PTMG2000/3 MDI/2 EMPD 
1 PTMG1000/3 MDI/2 BEPD 
1 PTMG2000/3 MDI/2 BEPD 
1 PTMG1000/3 HDI/2 BEPD 
1 PTMG1000/3 PDI/2 BEPD 

1.074 
1.092 
1.108 
1.123 
1.072 
1.116 
1.119 
1.060 
1.106 
1.064 
1.044 
1.120 

1.074 
1.088 
1.109 
1.129 
1.072 
1.116 
1.112 
1.064 
1.108 
1.063 
1.044 
1.120 

233 
252 
275 
279 
234 
273 
282 
238 
284 
239 
225 
281 

235 
250 
276 
278 
234 
273 
283 
237 
284 
239 
225 
281 

-15.6 
-13.4 
-6.3 
-7.1 

-15.7 
-8.8 
-5.8 

-16.2 
-5.8 

-15.0 
- 

-16.1 
-12.3 
-6.7 
-6.3 

-16.3 
-7.3 
-5.4 

-15.5 
-5.2 

-15.0 
-18.8 
-5.7 

Numbers preceding each chemical are the mole ratios used in the synthesis. PTMG, poly(tetramethy1ene ether) glycol (The trailing 
number is the nominal molecular weight.); MDI, 4,4'-diphenylmethane diisocyanate; DMPD, 2,2-dimethyl-1,3-propanediol; DEPD, 2,2- 
diethyl-1,3-propanediok 1,3BDO, 1,3-butanediol; EMPD, 2-ethyl-2-methyl-1,3-propanedio~ BEPD, 2-butyl-2-ethyl-1,3-propanedio~ HDI, 
1,6-diisocyanato hexane; PDI, 1.3-phenylene diisocyanate. Taken from reference 5 except Nos. 11 and 12, which are reported here for 
the first time. 

DENSITY 

The first application of the above groups is to density 
predictions. Densities of the 12 polymers were mea- 
sured using a liquid displacement technique at  room 
temperature. The values are listed in Table I. 

The measured values were used in a set of 12 si- 
multaneous equations, of the form of eq. ( 1 ) , with 
nine unknown Vi values and known coefficients Ni . 
Group values were then calculated using a least- 
square te~hnique .~  

It is important to know the accuracy of the group 
values obtained in this manner. The accuracy 
of the group values depends on the accuracy of the 
density measurements, assumed to be +0.5% at  

the 95% confidence level (standard deviation 
= 0.0025p,e,,,,~), and the matrix of coefficients of 
the simultaneous equations for the 12 polymers. Es- 
timates for the variance (square of the standard de- 
viation) of the component volumes were obtained 
using the theorem from statistics that states that 
the variance of the errors in the measured polymer 
volumes is a linear combination of the variances of 
the component volume errors with coefficients de- 
termined by the Ni values. This analysis assumes 
that the errors are independently normally distrib- 
uted. Using this technique, the upper and lower 
confidence limits (a t  the 95% confidence level) were 
determined. In this case, the upper and lower con- 
fidence limits are symmetrical. The least-square 

Table I1 Group Values 

Mi V,  T g i  In r ,  
Group (g/mol) (cm3/moI) (K) (s) 

72.10 
U- 284.29 

202.24 
194.15 
70.15 
98.21 
84.14 

126.27 
56.12 

73.1 + 0.8 
178 + 2 4  
137 + 24 
91 + 2 4  

111 f 28 
140 + 32 
137 + 3 3  
178 + 33 
108 ? 34 

183 + 2 - 2 
590 + 106 - 95 
269 + 31 - 29 

1035 + 576 - 396 
429 + 446 - 218 
319 + 159 - 113 
531 + 770 - 298 
436 + 222 - 157 
312 + 344 - 162 

-34.00 
21.80 
-8.16 
32.57 
12.40 
0.57 

19.05 
12.96 
-0.52 
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values and their confidence limits are listed in the 
third column of Table 11. 

As expected, the PTMG residue is obtained with 
the smallest confidence range, whereas the other 
components have an order of magnitude larger 
range. These components are not known accurately 
because they are present in much smaller amount 
than the PTMG residue and for the same reason it 
is not necessary to know them accurately to make 
predictions about polymers of this general type. 

The group volumes in Table I1 are all reasonable 
in comparison with the values given by van Krev- 
elen. The most accurately known group is the 
PTMG residue. Van Krevelen finds 74 cm3/mol in 
excellent agreement with the present 73.1 cm3/mol. 
The other components agree with the van Krevelen 
values within the accuracy of their determination. 

Using the group values in Table 11, the densities 
of all the polymers that were used in the determi- 
nation of the group values were calculated using eq. 
( 3 )  and are listed in Table I. The results are plotted 
as calculated versus measured density in Figure 1. 
The average agreement between calculated and 
measured is 0.2%. Because the accuracy of the den- 
sity measurements is 0.5%, the calculations are, on 
average, as reliable as the measurements. 

GLASS TRANSITION TEMPERATURE 

The second property considered is the glass tran- 
sition temperature. Glass transition temperatures 
of the 12 polymers were determined using a differ- 
ential scanning calorimeter (DSC) module on a 
DuPont 9900 Thermal Analyzer at a scan rate of 
10°C/min in an inert atmosphere. The midpoint of 
the transition was taken as the glass transition 
temperature. The measured values are listed in 
Table I. 

The measured Tg values were used in the 12 si- 
multaneous equations, of the form of eq. ( 4 ) ,  for 
nine unknown Tgi values with known coefficients 
Ni , The polymers and groups were the same as used 
for density. Group values were then calculated using 
the same least-square technique used for volume. 

Obtaining an estimate of the accuracy of the Tgi 
values is more complicated than for the volume 
components because the Tgi values appear as recip- 
rocals rather than linearly. The following procedure 
was used. Random errors were added to each of the 
12 Tg measurements and the set of resulting Tgi val- 
ues was computed. This calculation was done re- 
peatedly and the smallest interval Ii containing 90% 
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Figure 1 
temperature. 

Calculated versus measured density at room 

of the Tgi values was determined. A detailed descrip- 
tion of the procedure is presented in the Appendix. 
The least-square group values Tgi and their confi- 
dence limits are listed in Table 11, in the format Tgi 
+ A, - A _ ,  where Ii = [ Tgi - A _ ,  Tgi + A+] .  As 
expected, the PTMG residue is determined with the 
highest accuracy, whereas the other components 
have an order of magnitude or more higher uncer- 
tainty. Note that except for the PTMG residue, A- 
# A+. This is a result of the nonlinear nature of the 
glass transition temperature additive equation. 

The Tgi values in Table I1 are qualitatively rea- 
sonable. The PTMG residue is not only aliphatic 
but contains an oxygen swivel. It would therefore 
be expected to have the lowest group value and it 
does. The two groups that have aromaticity would 
be expected to have the highest group values and 
they do. The other groups are intermediate. 

Taking group values from Table 11, the glass 
transition temperatures of all polymers used in the 
determination of the group values were calculated 
using eq. (4) and are listed in Table I. The results 
are plotted as calculated versus measured Tg in Fig- 
ure 2. The average agreement between calculated 
and measured temperature is 0.2%. Because the as- 
sumed accuracy of the DSC measurements is f2' 
(about 0.8%), the calculations are, on average, as 
reliable as the measurements. 

The sensitivity of the Tgi values determined from 
the least-square fit to measurement errors in Tg de- 
pends on the entries of the matrix (ATA)-'AT, where 
A is the matrix of coefficients in the right hand side 
ofeq. (4) (here A was a 12 X 9 matrix andAT denotes 
the transpose of A). With the incorporation of this 
information into a computer program, it is possible 
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MEASURED Tg (K) 

Figure 2 
temperature. 

Calculated versus measured glass transition 

to test the sensitivity of Tgi values for various poly- 
mer sets before actually synthesizing the samples. 
This methodology provides a means of producing 
sample sets that exhibit a balanced representation 
of the component groups. From this, an accurate 
prediction of the component values should result. 

RELAXATION TIME 

Polymers exhibit a dynamic mechanical relaxation 
at  their glass transition. Typical shear modulus and 
loss factor behavior is shown in Figure 3. This re- 
laxation can be located anywhere over a wide fre- 
quency range, depending on molecular structure. 
The frequency at  which the transition loss factor 
peak is located is given approximately by the recip- 
rocal of the relaxation time 7. To proceed with the 
additive property analysis, this qualitative definition 
of relaxation time will be made specific and the ex- 
perimental technique for measuring it described. 
The next step involves the determination of the an- 
alytical form of the additive function. This step in- 
volves a correlation between relaxation time and 
glass transition temperature. Having completed 
these preliminaries, the group values for relaxation 
time are determined and used to compare calculated 
and measured values. 

Resonance Apparatus 

Dynamic mechanical properties were measured us- 
ing a resonance apparatus.6 A schematic of this ap- 
paratus is shown in Figure 4. In this device, a sample 
in the shape of a bar, 10-15 cm long with square 

lateral dimensions of 0.635 cm, is driven by an elec- 
tromagnetic shaker. The shaker is excited by a ran- 
dom noise source. The frequency dependence of the 
amplitude and phase of the acceleration difference 
between the driven end of the sample and the free 
end is determined using a fast Fourier transform. 
At a resonance, the amplitude has a local maximum, 
and the phase is a multiple of 90'. At  a given tem- 
perature, four or five resonant peaks can be deter- 
mined in a nominal range of two decades, from 100 
Hz to 10 kHz. A t  these frequencies, the wave equa- 
tion yields two coupled transcendental equations 
that can be solved numerically for shear modulus 
and loss factor. 

The measurements are repeated as a function of 
temperature from -60 to 70°C, and the resulting 
data are shifted to form a master curve over a wide 
frequency range at  one reference temperature using 
the time-temperature superposition pr in~iple .~ The 
following procedure is used log modulus curves a t  
different temperatures are shifted along the log fre- 
quency axis until they partially overlap to obtain a 
best fit, minimizing the sum of the squares of a sec- 
ond-order equation (in log modulus) between two 
sets of modulus data a t  different temperatures. The 
original data, which spanned only two decades of 
frequency but covered a range of temperatures, has 
now been shifted to cover a very wide range of fre- 
quency at a single reference temperature. As a mat- 
ter of convenience, all data here were shifted to a 
reference temperature of 25°C. Typical data are 
shown in Figure 3. 

Havriliak-Negarni Model 

The most successful description of the dynamic me- 
chanical properties of polymers a t  the glass transi- 

I t I 

4 8 12 16 

log f (Hz) 

Figure 3 Typical dynamic mechanical properties 
(polymer no. 1 at 25°C). 
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Figure 4 Schematic resonance apparatus. 

tion is the Havriliak-Negami (HN)  model.8 In this 
model, the frequency dependence of the complex 
shear modulus G* is given by 

(G* - G , ) / ( G ,  - Go) = [1 + ( ~ w T ) * ] - '  ( 5 )  

where G ,  is the limiting high frequency modulus, 
Go is the limiting low frequency modulus, w is the 
angular frequency, T is the relaxation time, a is the 
transition width parameter, and p is the transition 
asymmetry parameter. The parameter T is the re- 
laxation time considered in this work. It can be 
viewed qualitatively as the reciprocal of the location 
of the glass transition loss factor peak along the fre- 
quency axis. It can be shown that it represents an 
average value of the distribution of single relaxation 
times corresponding to the HN equation. 

The data in Figure 3 were fitted to eq. (5) using 
a nonlinear least-square algorithm from the Inter- 
national Mathematical and Statistical Libraries, Inc. 
The fit is shown in Figure 3 as solid lines. In general, 
the fit is about as good as the experimental accuracy 
of the measurements, which is 2% on modulus and 
5% on loss factor. 

Measured values of In 7 are listed in Table I. The 
accuracy of the relaxation time measurement is dif- 
ficult to assess, but based on the precision of the 
measurements, the variability from sample to Sam- 
ple, and the variability from one experimental tech- 
nique to another, a reasonable estimate is fl decade 
of frequency. 

Correlation of T and Tg 
The next step in the program outlined here is to 
demonstrate a correlation between T and Tg. This 
demonstration proceeds with the usual assumption 
that the frequency f of the loss factor peak shifts 
with temperature following an Arrhenius behavior 
of the form 

where T = 1 ( 2 i ~ f )  is the relaxation time for the peak, 
E is activation energy, T~ is a constant, R is the gas 
constant, and T is absolute temperature. This as- 
sumption is almost universally made when consid- 
ering dynamic measurements, both mechanical and 
dielectric, and has proven useful for numerous poly- 
m e r ~ . ~  Note that the assumption of Arrhenius be- 
havior applies only to one point on the loss factor 
curve, the peak value. The assumption is that the 
molecular motion corresponding to the peak has an 
Arrhenius behavior with a certain activation energy. 
Other motions may have different activation ener- 
gies. Thus, the shift factor curve may follow the 
Williams-Landel-Ferry ( WLF) equation, which is 
equivalent to a particular distribution of activation 
energies, whereas the loss factor peak value follows 
an Arrhenius equation. 

Taking logarithms of both sides of eq. (6)  yields 

In T = In T~ + E / R T  ( 7 )  

This relation holds at any temperature. Evaluating 
at the glass transition temperature yields 

In rg = In r0 + E / R T ,  (8) 

where rg is the value of the relaxation time at the 
glass transition temperature. Subtracting eq. (8) 
from eq. ( 7 )  gives 

In r - In rg = E / R (  1 / T  - l / T g )  (9) 

eliminating the unknown constant r 0 .  Rearranging 
eq. (9  ) yields 

In T = (In rg + E / R T )  - E / R T ,  ( 1 0 )  
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The derivation thus far has considered a generic 
polymer. If we now assume that E and 7g are about 
the same for all the urethane polymers considered 
here, it follows that In 7 is a linearly decreasing 
function of l/Tg, when all the 7 values are eval- 
uated at  the same reference temperature. The 
slope of this line allows a determination of the 
activation energy for the polymers. The intercept 
of the line represents the extrapolated maximum 
relaxation time a t  the maximum glass transition 
temperature, infinity. 

To see whether the above assumptions are valid, 
data for more than 20 polyurethanes were ana- 
lyzed.'O All data were obtained in our laboratory 
using polymers of known structure, and they were 
all analyzed in the same manner, using the reso- 
nance apparatus and fitting the data to the HN 
equation. A plot of the results is shown in Figure 
5. The agreement is satisfactory with a correlation 
coefficient of 0.96, giving a useful tool for predict- 
ing relaxation time from glass transition temper- 
ature measurements. Recall that  the relaxation 
time was determined from resonance measure- 
ments, whereas Tg was determined independently 
from DSC measurements. 

From the slope of the line in Figure 5 fitted to eq. 
( lo ) ,  E = 120 kJ/mol. In comparing this value with 
others in the literature, Boyerl' showed a plot of 
activation energy as a function of glass transition 
temperature. For the range of Tg values observed 
here, 233-284 K, he shows activation energies from 
100 to 150 kJ/mol. The value obtained here is in 
excellent agreement with this range. 

From the intercept of the line in Figure 5, 7g = 65 
ms. Thus, for these polymers, one could define the 
glass transition temperature as the temperature a t  
which the relaxation time is 65 ms. 

Analytical Form for Additive T 

It was shown earlier that Tg is an additive property 
and it was also shown that 7 is correlated with Tg.  
It then follows that 7 is also an additive property. 
The analysis proceeds as follows. As noted earlier, 
Tg is an additive property given by the relation 

In eq. ( lo ) ,  the term in parenthesis is the value of 
In 7 when Tg is infinite so that eq. (10) can be written 
as 

T,' x 1 O3 (K) 

Figure 5 
versus I/Te 

Arrhenius plot of In 7 (at room temperature) 

(12) In 7 = In 7, - E/RTg 

where 7, is the limiting relaxation time for infinite 
glass transition temperature. Assuming that each 
component group has the same relaxation time de- 
pendence on glass transition temperature as does 
the overall polymer, it follows from eq. (12) that 

In 7i  = In 7, - E/RTgi (13) 

Substituting eq. (11) in eq. ( 12) and then solving 
eq. ( 13) for TS' to substitute in the resulting equa- 
tion, it follows that 

which is the desired additive functional form. 

In T~ Group Values 

Relaxation time group values were calculated from 
eq. (13)  using the known values of Tgi from Table 
11. The results are listed in the last column of Table 
11. Because the relaxation time group values were 
calculated directly from the glass transition tem- 
perature group values, the qualitative behavior 
of the relaxation time group values mirror the 
glass transition temperature group values. Spe- 
cifically, - ( CH2)40 - has the shortest relaxa- 
tion time because it has the lowest TBi value and 
- U - C6H4 - U - has the longest relaxation 
time because it has the highest Tgi. 

Using the group values of In 7i in Table 11, poly- 
mer relaxation times were calculated for all those 
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APPENDIX. TECHNIQUE FOR ESTIMATING 
GLASS TRANSITION COMPONENT 
ACCURACY 

/ i  
” I  / I 

I / @  
-20 v J 
-20 -16 -12 -8 -4 

MEASURED In 7 (sec) 

Figure 6 
perature. 

Calculated versus measured In T at room tem- 

systems for which experimental data were avail- 
able and are listed in Table I. The results are 
plotted as calculated versus measured In T in 
Figure 6. The average agreement between mea- 
sured and calculated In T is 7%. Especially con- 
sidering the wide variation in this property, this 
agreement is sufficient to allow useful predictions 
to be made. 

CONCLUSIONS 

Group values of molar volume, glass transition 
temperature, and dynamic mechanical relaxation 
time were determined for nine groups that can be 
used to analytically synthesize a wide range of 
polyurethanes. The component values were deter- 
mined from a set of 12 polyurethanes that, with 
two exceptions, were taken from our earlier work. 
In this way, all data were obtained in the same 
manner for all the polymers. A disadvantage of us- 
ing this particular set is that one group, the PTMG 
residue, is present in every polymer in much greater 
concentration than any other group. Thus, this 
group is known with much greater accuracy than 
any other group. 

The additive property analysis for relaxation 
time, defined as a parameter in the HN equation, 
was based on a relation between relaxation time and 
glass transition temperature. 

Using the group values obtained from mea- 
surements on the 12 polymers to calculate den- 
sity, Tg, and T ,  i t  is found that density can be pre- 
dicted to within 0.2%, Tg within 0.2%, and In T 
within 7%. 

A Monte Carlo procedure was used to estimate the 
accuracy of the glass transition component values. 
Independent identically distributed random error 
values ej were added to each of the 12 measured Tg 
values in eq. (4  ) , and the nine Tgi values resulting 
from this new Tg set were computed as before. This 
was repeated N times and for each i, i = 1, . . . , 9, 
the smallest interval Ii  containing 90% of the N cal- 
culated Tgi values was determined. For each of the 
N simulations, a vector V of 24 independent nor- 
mally distributed values with mean = 0 and a spec- 
ified standard deviation u was calculated. The first 
12 entries of V lying within [ -2u, 2u] were used for 
the 12 ej values. If there were less than 12 such val- 
ues, a new vector V was computed. The probability 
density function f ( x )  for each ej thus equals n ( x ;  
0, u)/0.9545 for 1x1 I 2u, and f ( x )  = 0 for 1x1 
> 2a, where n denotes the probability density func- 
tion of the normal distribution with mean 0 and 
standard deviation u (0.9545 is the area under n 
between x = -2u and x = 2u).  The vector V of nor- 
mal random numbers was generated using the mod- 
ified Box-Muller method of Marsaglia and Bray.12 
Only the first number of each pair generated by this 
method was used in V. The uniform [ in ( 0 , l )  ] ran- 
dom numbers xk required by the modified Box- 
Muller method were generated using the multipli- 
cative linear congruential algorithm (MLCA) s k + l  

= a s k  mod m with a = 16807 and m = 2147483647 
(the initial seed so is to be an integer in [ 1, rn - 11, 
and X k  in (0,  1)  = sk/rn).l3 The value 876366394 
was taken for the initial seed so. Results of this sim- 
ulation with N = 600000 and u = 1.0 are given in 
Table 11, where the value of Tgi was calculated from 
the least-squares fit using the measured data for Tg 
(Table I )  and the upper and lower confidence limits 
were obtained with the Monte Carlo simulation. The 
values of A+ and A- (see earlier text for notation) 
given in Table I1 did not change by more than 3% 
when the simulation was rerun, reversing the order 
of the entries in each vector V; or using initial seed 
values of 1894012152 or 844624270 (roughly and 
3 of the way through the m - 1 integers generated 
by the MLCA starting with 876366394); or with N 
= 100000. 
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